BT Space R&D

Jon Wakeling

Acting Director, Fundamental Research and IPR

BT Research and Network Strategy

Chair UKspace-techUK Satellite Telecommunications Committee Member of UKTIN NTN Experts Group

25th January 2024

Agenda

- BT's approach to space R&D
- The Adastral Park Space Lab
- BT R&D update:
 - HAPS fixed and mobile service demonstrations;
 - Satellite QKD service validation and integration;
 - Optical satellite systems.

BT's approach to space R&D

BT's commitment to Space R&D

		BT Space Strategy Pillars					
							6. Leverage Our Research Capabilities
National Space Strategy Ten Point Plan – Highest Impact Opportunities	1. Capture the European market in commercial small satellite launch						
	2. Fight climate change with space technology	Ø	Ø	Ø		Ø	٢
	3. Unleash innovation across the space sector	Ø	٢	٢		٢	\bigcirc
	4. Expand our horizons with space science and exploration						
	5. Develop our world class space clusters	Ø	Ø	٢		٢	۲
	6. Lead the global effort to make space more sustainable						
	7. Improve public services with space technology	Ø	٢	٢		٢	\bigcirc
	8. Deliver the UK Defence Space Portfolio	Ø	٢	٢		٢	\bigcirc
	9. Upskill and inspire our future space workforce	Ø	٢	٢		٢	\bigcirc
NK	10. Use space to modernise and transform our transport system	Ø	٢	٢		٢	\bigcirc

BT's commitment to Space R&D

space workforce

BT Space R&D engagements

The Adastral Park Space Lab

R&D delivery: Adastral Park Space Lab

- 3000+ square metre compound:
 - Access controlled gates;
 - CCTV and motion detector perimeter security;
 - Comms Room;
 - Office and lab cabins;
 - Electricity substation;
 - Back-up generator.
- Connectivity:
 - Other BT labs and testbeds, e.g. 5G, SDWAN, QKD, Broadband, Future Video, Robotics & Drones etc.;
 - Innovation Martlesham company labs and testbeds;
 - Showcases;
 - Reference models;
 - External partner connections.

R&D delivery: Adastral Park Space Lab

- 3000+ square metre compound:
 - Access controlled gates;
 - CCTV and motion detector perimeter security;
 - Comms Room;
 - Office and lab cabins;
 - Electricity substation;
 - Back-up generator.
- Connectivity:
 - Other BT labs and testbeds, e.g. 5G, SDWAN, QKD, Broadband, Future Video, Robotics & Drones etc.;
 - Innovation Martlesham company labs and testbeds;
 - Showcases;
 - Reference models;
 - External partner connections.

Comms room

10

R&D delivery: Adastral Park Space Lab

- Adastral Park ecosystem:
 - 140+ companies, inc. global telecoms and ICT players;
 - Incubation services;
 - Business angels, mentors, VCs, LEP support services;
 - Networking and SIG events;
 - Lecture, conference and Expo facilities.
- Space East ecosystem:
 - Connect to regional space capabilities;
 - Focus on key regional sectors;
 - Collaborate with other national clusters.

BT R&D update

- HAPS fixed and mobile service demonstrations
- Satellite QKD service validation and integration
- Optical satellite systems

HAPS fixed and mobile service demonstrations

HAPS fixed & mobile service demonstrations

- Working with Stratospheric Platforms Ltd
- Solution:
 - Hydrogen powered autonomous aircraft:
 - o Altitude c.18km;
 - o Coverage 30-140km diameter;
 - o 5-10 days on station.
 - Cambridge Consultants Massive MIMO antenna:
 - Modular "tiles" allow flexibility in choice of antenna size, coverage and capacity;
 - Comprises 4096 elements contrast with 64 element antennas on the 5G network;
 - o Delivers 400-600 5G cells of 1-3km diameter;
 - Supports direct-to-device connectivity.
- Commercial timeline:
 - Prototype payload in development;
 - Prototype flight platform 2025;
 - Pilot trials potentially in 2025/26.

Visualisation of the Stratomast aircraft

32 Tile antenna model

West Midlands & Wales coverage simulation

M25 coverage simulation

Devon & Cornwall

HAPS integration with satellites

- Recent progress:
 - Demonstrated antenna technology in operation at Adastral Park;
 - Handover from campus 5G network to HAPS payload and back.
- Potential flight demo 2024/25 of:
 - Direct backhaul to Adastral Park;
 - Backhaul via satellite:
 - ➢ Intelsat GEO;
 - > OneWeb LEO.
 - 3D Network concept development.
- Use-cases to be demonstrated at Bentwaters airfield:
 - Fixed Wireless Access;
 - Mobile broadband;
 - Remote vehicle control;
 - Remote drone control.

Satellite QKD service validation and integration

Source: SPEQTRE: Protecting data using the 'spooky' power of quantum mechanics | by Science and Technology Facilities Council (STFC) | Big Science at STFC |

Satellite QKD service validation and integration

- ArQit: ESA QKDSat mission (launch 2025):
 - Use-cases include: Global WAN interconnect, subsea cables; UK CNI, e.g. connecting core/metro network fibre QKD islands, remote 4/5G RAN basestations;
 - BT will deliver experimental OGS trials and demonstrations at Adastral Park in Phase 2.
- Craft Prospect: ESA VOLT mission (launch 2026):
 - Mission uses innovative Cubesats for service augmentation;
 - BT working on use-cases and trials.
- Rhea Tech: new ESA proposal:
 - Rhea proposing development of multi-platform service orchestration;
 - SpeQtral and Toshiba UK potential partners;
 - Potential UK-Singapore network.
- Tracking other SQKD programmes, e.g.:
 - ESA TeQuantS project (TAS leading);
 - EU-ESA SAGA mission, SES Eagle-1 satellite;
 - UK-Singapore SPEQTRE collaboration (STFC).

Satellite QKD concept

Likely experimental OGS form factor Source: Quantum Research — New Austrian (austrianinformation.org)

Target commercial OGS form factors

Optical satellite systems

ESA Optical Ground Station, Tenerife. Source: ESA - ESA's site for laser and quantum links marks 25 years

Optical Satellite Systems

- Proposed capability summary:
 - High speed earth-space communications using lasers;
 - Constellations with optical inter-satellite links;
 - Satellites may have compute and storage capabilities.
- Potential for new service types:
 - Massive data transfer speeds for niche applications;
 - 'Edge compute' and data centre facilities in space;
 - Distributed network architecture across terrestrial and space infrastructure for resilience, e.g. subsea cables.
- BT service opportunities:
 - In field of view or global Gbit/s or Tbit/s connections;
 - Space-based data processing or process automation;
 - Intercontinental network resilience and augmentation.
- Ground equipment:
 - Various types already exist;
 - Demonstrated operation in a rugged environment.
- ESA projects and programmes:
 - Components;
 - Networks.

Target application locations

Some free space optical technologies have already been developed and tested in harsh environments

ESA collaborative funding programmes targeting different system and service elements

Optical Satellite Systems: service insight

- Service management will be a challenge:
 - Cloud cover varies hugely across different locations;
 - Other impairments include:
 - Particulates: sand/dust, pollution;
 - Atmospheric turbulence, especially in urban and hot environments.
 - Availability of end points do not necessarily coincide;
 - Local environmental clutter can also reduce service availability;
 - Optical channel is not necessarily as secure as you might think due to dispersion and scatter.
- Potential solutions:
 - Significant ground network infrastructure required;
 - Intermediate links, e.g. through drones or other HAPS, to convert to RF links to the ground;
 - Geography or application specific solutions likely.
- BT well positioned for exploitation:
 - World's largest global MPLS network already in place;
 - Full suite of flexible service management capabilities.

Example cloud cover variation by location and time of year

Urban locations are challenging environments due to blockage, light pollution, particulates and turbulence

System proponents recognise the need for significant supporting terrestrial infrastructure

If any of these challenging areas are of interest, please come and talk to us. jon.wakeling@bt.com

Thank You